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We study the dispersion relations of plasmonic bands that arise from the coupling of electric-quadrupole
resonances in three-dimensional plasmonic lattices consisting of metallic nanospheres. Through analytical
derivation, we show that two branches of quadrupole bands in simple-cubic lattices with a small lattice
constant possess negative group velocities. Distinct from double negative �� , ��0� media in which the
negative dispersion originates from the coupling of electric and magnetic responses �P and M�, the negative
dispersion induced by quadrupole resonance is an intrinsic property of quadrupole that does not require
coupling to another degree of freedom. In addition, the quadrupole dispersions are intrinsically anisotropic,
which defies a simple isotropic effective-medium description without spatial dispersion even though the lattice
constant is small compared with the wavelength. In plasmonic systems composed of metallic nanoparticle
clusters, the coupled quadrupole resonance may be tuned to lower optical frequency and the coupling strength
between this quadrupole resonance and external electromagnetic �EM� waves could be in the same order of
magnitude as the magnetic dipole M.
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I. INTRODUCTION

Negative refraction at a particular frequency range can be
achieved if there are simultaneously negative values of elec-
tric permittivity � and magnetic permeability �.1 Such kind
of material has interesting optical properties, including the
possibility of transmitting both propagating and evanescent
EM waves.2 It is relatively straightforward to obtain negative
permittivity, but it is technically difficult to achieve negative
permeability especially at optical frequencies. Recently
negative refractive index �negative-n� materials are demon-
strated from microwave to optical frequencies by introducing
resonant elements such as split-ring resonators �SRR�,3 and
nanoplasmonic structures such as nanorod pairs4 and “fish-
net” structures.5 In optical frequencies, plasmonic clusters
such as the ring structure6,7 are also plausible candidates to
achieve magnetic resonances. In those cases, one have to
face the difficulty to define a meaningful magnetic perme-
ability �, as discussed by Landau,8 since the magnetic re-
sponse in optical frequencies is derived from the curl of elec-
tric dipoles. In high frequencies, it may be more convenient
to consider the spatial dispersion9 of the dielectric function
��� ,k� which can describe comprehensively the electric and
magnetic responses. The electric quadrupole Q, generated by
the symmetric part of the field gradient, sym��E�, can be
treated as the lowest-order effect which yields the spatial
dispersion. Another point which should be emphasized is
that, in plasmonic structures such as clusters �ring structure,
etc.�, Q is in general of the same order of magnitude as the
magnetic moment M. In the parallel metallic nanobar struc-
ture, the contribution from Q has also been proved to be
comparable to that from M in the far field.10

In plasmonic lattices, the dispersion can be viewed as the
consequence of the hopping of resonances from one unit to
another, and in that sense, plasmonic systems are analogous
to electrons, where the band structure originates from the
hopping of electrons from one site to another in the tight-
binding picture. We may thus associate the plasmonic disper-
sions that are derived from dipoles and quadrupoles with
electronic bands of p and d states, respectively. In electronic

systems, sp states are usually dispersive and have wide band-
widths, while the d states are more localized leading to a
smaller bandwidth.11 Similar behaviors are expected in plas-
monic systems so that the dipole bands should have a wider
bandwidth than the quadrupole bands. In some transition
metals, there are strong hybridizations between sp states and
the d states. In plasmonics, the hybridization can in principle
be tuned as will since the lattices are artificial.

In this paper, we will investigate the dispersion properties
of three-dimensional plasmonic lattices made up of small
metal nanospheres. Such a problem is typically considered
by treating each nanosphere as a dipole. We will give a thor-
ough analysis by including the quadrupoles. It is shown that
the quadrupole resonance in simple-cubic lattices can lead to
a new kind of negative photonic band which is different from
the Veselago type with simultaneously negative values of
���� and ����. Simple homogenization theories give us per-
mittivity and permeability that depend only on frequency �,
not on wave vector k. The effects of quadrupole cannot be
described by such effective parameters if spatial dispersion is
not included. It is also different from the Bragg scattering
type12 since the lattice constant a is much smaller than the
wavelength �. Compared to the photonic crystal with lattice
constant a��, the plasmonic systems we deal with are still
in the long-wavelength limit. We also note that some authors
have shown the negative dispersion for tightly packed plas-
monic particles.13 However, the mechanism responsible for
the negative dispersions, which is the hopping of electric
quadrupoles from one site to another in our case, is different
from those cases.

This paper is organized as follows. In Sec. II, we calculate
the band structures of three-dimensional simple-cubic plas-
monic lattices. Bands with negative group velocity are ob-
served independent of the lattice constant a, and these nega-
tive bands are found to originate from quadrupole
resonances. In Sec. III, analytical modeling is developed for
quadrupole resonances which is analogous to the coupled
dipole equations.14,15 The negative group velocities vg are
derived analytically and the anisotropy of the bands are
found even in the long-wavelength limit. In Sec. IV, we fur-
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ther consider the plasmonic dispersion for the quadrupole
mode of a nanoparticle cluster, using an octahedral cluster as
prototype. We conclude this work in Sec. V and in the Ap-
pendix we give mathematics details that are omitted from
main text.

II. QUADRUPOLE BANDS

We first calculate the photonic band structures of simple-
cubic plasmonic lattices by solving the Maxwell equations
using the multiple-scattering theory �MST�.16 We note that
MST for spherical objects is based on the expansion of the
electric and magnetic fields in terms of vector spherical har-
monics, and the convergence is controlled by the number of
angular-momentum channels used. If the calculation is trun-
cated so that only spherical harmonics with l=1 are used, the
results will be equivalent to using a dipole approximation,
while if only l=2 terms are used, it is a quadrupole approxi-
mation. It is known in the literature that for metallic spheres
arranged in one dimensional chains, the dipole and quadruple
dispersions are separated in energy if rs�a /3.17 In this pa-
per, we use the Drude-type permittivity ����=1−�p

2 /�2 to
describe the response of the metal with a bulk plasma fre-
quency of �p=6.18 eV. The salient features of the results
remain the same for other choices of the plasma frequency.
In Fig. 1, we show the band structures for two values of the
lattice constant a �20 and 60 nm� while keeping the ratio of
the radius to lattice constant rs /a=0.26 fixed. We find a total
of eight bands, three of them are of dipole origin, and the
other five are classified as quadrupole bands. Counting the
bands from low energy to higher energy, the two low-lying
bands are transverse dipole bands, in which the dipoles are
perpendicular to the k-vector. We then have the longitudinal
dipole band at higher energy, with the dipoles pointing along
the k-vector. The five quadrupole bands near 3.9 eV are less
dispersive. Bands with negative group velocity near the zone
center are observed for two branches of the quadrupole
bands. The calculations show that the band structures with
l=1,2 have only very slight modifications if higher multi-
poles l�3 are included. This is not surprising if we note that
the quadrupole bands do not reach the octupole �l=3� reso-
nance frequency �l=3�� l

2l+1�p=4.05 eV. The quadrupole

bands are found to be essentially scale invariant, in the sense
that the dispersion is nearly the same in an absolute fre-
quency scale if we vary the lattice constant but keep the ratio
rs /a fixed. However, a small redshift of about 0.02 eV in
photon energy are observed in Fig. 1 when the sphere radius
increases from 5.2 to 15.6 nm. This redshift comes from the
redshift of the single sphere resonance frequency when the
sphere radius becomes larger.15 The longitudinal dipole
mode is also very robust, while the transverse modes change
more conspicuously because they are coupled to free photons
whose dispersion is given by the light line, which move
closer and closer to vertical axis with the slope proportional
to � /a as the lattice constant becomes smaller. As a conse-
quence, the dispersion of the transverse dipole modes have a
larger slope when a becomes smaller as shown in Fig. 1.
Similar phenomena can be observed for longitudinal and
quadrupole modes near 3.8 and 3.9 eV as the light line in-
tersects the plasmonic resonances.

Let us now consider the hybridization of the P and Q
modes. The polarizability 	p and 	Q for P and Q are propor-
tional to the corresponding Mie coefficients18 such that
	p���=3ia1��� /2k0

3, and 	Q���=30ia2��� /k0
5, where k0

=� /c is the wave vector in vacuum. By setting 	p=0 �or
	Q=0�, we can obtain a “pure quadrupole” or “pure dipole”
dispersion, respectively. Figure 2 compares the complete
band structure �black�, which treats all angular-momentum
channels on equal footing, with pure dipole and pure quad-
rupole bands shown by light gray �green� and dark gray �red�
dots, respectively. We can see that for the same lattice con-
stant, the small radius �Fig. 2�a�� configuration shows negli-
gible hybridization between the P and Q bands, while some
hybridization is observed if the sphere has a larger radius
�Fig. 2�b��. More information can be obtained by an eigen-
state analysis. Let us focus on the quadrupole bands. In Fig.
2�a�, taking the 
X direction as example, the lowest energy
band is a Qyz quadrupole band with a small negative vg. At
higher energies the bands correspond to the twofold-
degenerate states Qxz and Qxy. The highest energy bands are
the Qyy = �Qzz bands with negative vg. We note that Qxx is
not a linear independent variable since trQ=0. Three off-
diagonal Q states are degenerate at the 
 point and so are the
two diagonal Q states, as required by symmetry. In Fig. 2�a�,
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FIG. 1. Band structures of simple-cubic plasmonic lattice calcu-
lated by MST with the ratio rs /a=0.26 fixed. The lattice constants
in �a� and �b� are 20 and 60 nm, respectively.
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FIG. 2. �Color online� Band structures calculated by MST with
l=1,2 �black dots�, and l=1, l=2 separately shown as light gray
�green� and dark gray �red� dots. The sphere radii rs in �a� and �b�
are 5.2 and 6 nm, respectively, while the lattice constant a
=20 nm is fixed.
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the agreement of black and green �red� dots indicates the
independence of P and Q bands when the ratio rs /a is 0.26.
The hybridization between P and Q can be neglected. As the
coupling between different angular-momentum channels is
weak, the bands can be meaningfully assigned as dipole and
quadrupole bands. As rs /a increases to 0.3, longitudinal P
and Qyy =Qzz mode intersect at about 3.97 eV, which is
shown in Fig. 2�b�. The anticrossing effect can be observed
and the original P and Q bands hybridize to form two new
bands. In order to make the physics simple, we focus the
following discussions on configurations which have a clean
separation of P and Q derived bands.

III. ANALYTICAL MODELING

To obtain a better understanding of the band dispersions
derived from the quadrupoles, we will set up a set of coupled
quadruple equations. This is essentially the same strategy of
setting up coupled dipole equations to study the dispersion of
dipolar arrays. We start from the electric fields at point r
generated by the quadrupole at the origin,

E�r� = −
i

6
��f��r� − 2f�r�/r��n · Q · n�n − �f��r�

+ f�r�/r�Q · n� , �1�

where f�r�=k0
3h2

�1��k0r�, and n=r /r is an unit vector. We use
the function f�r� with argument r instead of the spherical
Hankel function h2

�1��k0r� with argument k0r for the sake of
convenience. Since the quadrupoles respond linearly to the
symmetric part of the gradient of the local electric field, we
define a second-rank tensor field F as

F	� = sym��E� =
1

2
��E	/�x� + �E�/�x	� , �2�

where 	 and � are indices of coordinates which run from 1
to 3. The gradient of field �E can be calculated from Eq. �1�.
The diagonal and off-diagonal terms of F are, respectively,

F		 = −
i

6
��f1n	

2 + f2�n · Q · n + f3n	�Q · n�	 + f4 · Q		�

F	� = −
i

6
� f1n	n�n · Q · n +

1

2
f3„n��Q · n�	 + n	�Q · n��…

+ f4Q	�� , �3�

where � ·E=0 will be satisfied automatically since trQ=0,
and no Einstein summation convention is assumed. In Eq.
�3�, we define f1, f2, f3, and f4 as auxiliary functions which
are linear combinations of f�r�, f��r�, and f��r�,

f1 = f��r� − 5f��r�/r + 8f�r�/r2, f2 = f��r�/r − 2f�r�/r2,

f3 = − f��r� + 2f��r�/r − 2f�r�/r2, f4 = − f��r�/r − f�r�/r2.

From Eq. �3� the Green’s function GQ�r−r�� for the
second-rank tensor field F can be defined, which satisfies

F�r� = GQ�r − r��Q�r�� . �4�

To deal with the second-rank tensor in a compact form,
we can rewrite Q and F as vectors: Q
= �Q22,Q33,Q12,Q13,Q23�T and F= �F22,F33,F12,F13,F23�T.
In this vector notation, the Green’s function GQ�r−r�� is
represented by a 55 matrix.

Once the local tensor field F is given, the linear response
is simply Q=	QF. Considering a quadrupole at position ri in
the lattice, the corresponding local tensor field F is generated
by all the other quadrupoles except itself, namely,

Q�ri� = 	QF�ri� = 	Q 	
rj�ri

GQ�ri − r j�Q�r j� . �5�

The Green’s function GQ�r−r�� can be obtained from Eq.
�3�. With the Bloch condition imposed on Eq. �5�, we will
reproduce the rigorous results given by three-dimensional
MST with angular momentum l=2 only. Since �=1 for the
plasmonic spheres here, the contribution from magnetic
quadrupole is not considered here. We see from Fig. 2�a� that
for plasmonic lattices in which the rs /a ratio is smaller than
0.26, the bands for l=1 and l=2 has no observable hybrid-
ization, and the two angular-momentum channels are indeed
separable. We can thus discuss “quadruple bands” and “di-
pole bands” separately. For the quadrupole bands, the disper-
sion is analogous to d bands in transition metals.11 For high
angular-momentum states, the coupling is typically short
ranged. The short-range interaction is dominated by the near
zone field in electrodynamics, or in other words, the quasi-
static limit19,20 of EM fields. We will show that the quadru-
pole bands obtained within the framework of the quasistatic
approximation �QSA� agree very well with the full electro-
dynamic results.

In the quasistatic limit, we take the light speed c to infin-
ity and the electric field E does not depend on k0. In that
limit, only the terms containing the lowest power of r survive
and the auxiliary functions f i are reduced to the simple forms

f1 � − 105i/r5, f2 � 15i/r5, f3 � 60i/r5, f4 � − 6i/r5.

�6�

In the quasistatic limit, all slowly convergent powers of r
in �E drop out, and we need to consider only the r−5 terms,
which simplify the lattice sum in Eq. �5� considerably. Spe-
cial summation techniques developed to accelerate conver-
gence such as Ewald’s sum is unnecessary in the QSA here.
Equations �3� and �6� give us the quadrupole’s Green’s func-
tion in QSA with a simple 55 matrix form. As is known
from the band-structure analysis above, the eigenstates of the
two quadrupole negative bands contain only the diagonal
elements 
Qyy ,Qzz� of the Q tensor. The subspace spanned
by their eigenvectors is orthogonal to that formed by the
nondiagonal elements. The bands of these 
Qyy ,Qzz� states
are of special interest since they have intrinsic negative
group velocities. F and Q are reduced to two-dimensional
vectors when we focus on the subspace spanned by Qyy and
Qzz that give two quadrupole bands with negative group ve-
locity. We define two-dimensional vectors Q�= �Qyy ,Qzz�,
F�= �Fyy ,Fzz�, and the 22 matrix form of QSA Green’s
function becomes
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G��r� =
1

6r5�105ny
2�nx

2 − ny
2� + 75ny

2 − 15nx
2 − 6 15�nx

2 − nz
2��7ny

2 − 1�
15�nx

2 − ny
2��7nz

2 − 1� 105nz
2�nx

2 − nz
2� + 75nz

2 − 15nx
2 − 6

� , �7�

where n is again the unit vector in the direction of r.
To find the Bloch states, the lattice Green’s function is

transformed to the Fourier space: G��k�=	ri�0G��ri�eik·ri.
Equation �5� becomes a secular equation of the form
det�	Q

−1I−G��k��=0, where 	Q
−1 and G��k� contain the ma-

terial and geometric information, respectively. The dyadic
Green’s function in Eq. �7� now has a simple structure since
the only dependence on the lattice constant is the prefactor
r−5. We can evaluate the lattice sum in a mesh of integer
points �i , j , k� which are independent of the lattice constant
to solve the secular equation. In Fig. 3�a�, we can see that the
QSA dispersion relations which are shown by light gray
�green� dots for the states spanned by Qyy and Qzz agree well
with the MST results �black dots�. Since the QSA gives such
good agreement for the quadrupole bands, we can now dis-
cuss the physics using the QSA picture to give a more
straightforward interpretation and we can obtain analytic re-
sults near the zone center. At the 
 point the lattice Green’s
function is found to be G�
=−a−5� ·I, where � is a lattice sum,

� =
1

6�i2 + j2 + k2�5/2 	
�i,j,k��0

105j2�i2 − j2�/�i2 + j2 + k2�2

+ �75j2 − 15i2�/�i2 + j2 + k2� − 6.

� can be easily summed to give a value of 18.65. This is a
constant that is specific to the geometry of the system. The

quadrupole polarizabilty in QSA has a simple form
	Q

−1→ �1−5�2 /2�p
2�rs

−5 if the Drude-type permittivity is ap-
plied. Combining the dynamical and geometric parts in the
secular equation, we get the QSA frequency of eigenstate at
the 
 point,

�0 = �p�2

5
�1 + ��rs/a�5� . �8�

The term of �rs /a�5 can be regarded as the geometric cor-
rection of the single sphere quadrupole resonance �l=2

=�2
5�p. This semianalytic result indicates the symmetry re-

quired degeneracy of two eigenstates Qyy = �Qzz at the 

point for the simple-cubic lattice, which is manifested in the
numerical calculations, such as the example shown in Fig. 1
with rs /a=0.26. The result given by formula �8�: �0

=3.95 eV is the same as the numerical result from MST up
to two decimal places when a=20 nm.

To show that the group velocity is intrinsically negative,
we find the group velocity and the second derivative of the
photon dispersion near the 
 point. We do the first and sec-
ond derivatives on the secular equation. The first derivative
�kG� is found to be exactly zero, thus the group velocity is
�� /�k=0 as expected. The second derivative of the disper-
sion at the zone center is found to be direction dependent.
Taking 
X and 
M direction as examples, we obtain

�2G�/�k2�
� = a−3�4.71 2.86

2.86 4.71
�,

and

�2G�/�k2�
� = a−3� 4.71 − 1.43

− 1.43 4.71
�.

The second derivative of secular equation finally gives us the
results: �2� /�k2 �
�= �−4.71�2.86�mc

−1 and �2� /�k2 �
�

= �−4.71�1.43�mc
−1, where mc=5�0a3 /�p

2rs
5 is a system pa-

rameter. This shows that the dispersion is necessarily aniso-
tropic, even for a system with cubic symmetry. The inverse
of second derivative of the plasmonic dispersion corresponds
to the effective mass in electronics. The band with a larger
absolute value of the second derivative has a more negative
slope and a lower frequency. Also it is clear that the contrast
m
� /m
� is closer to 1 for the lower frequency band. The
equifrequency contours of these negative bands cannot be
simply represented by ellipsoids. In photonic crystals, similar
anisotropy near the 
 point have also been be observed,21

which is essentially introduced by multipoles with l�2.
Figure 3�c� shows the equifrequency contours of the two
negative bands. The lower frequency band with larger nega-
tive slope has more circular shape as expected, while the
higher frequency band is distinctly anisotropic. By checking
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FIG. 3. �Color online� �a� The dispersion of negative group ve-
locity bands calculated under QSA which is shown by light gray
�green� dots compared with the rigorous MST results �black dots�.
The lattice constant a is 20 nm and radius rs is 5.2 nm. �b� The
effective permittivity �ef f ��ef f =1, not shown� calculated by CPA
where we use the electron collision frequency �=0.02 eV in the
Drude model. Quadrupole bands near 3.9 eV are beyond the de-
scription of CPA. �c� Equifrequency contours of the two negative
bands. The frequencies are 3.948 and 3.944 eV for dark gray �red�
and black dots, respectively. The band with smaller negative slope
has square shape even near the Brillouin-zone center, while the one
with larger negative slope is more isotropic.
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the eigenstates, the lower frequency band corresponds to the
eigenstates Qyy =Qzz in the 
X direction and Qyy =−Qzz in the

M direction, respectively.

The above results show that the bands derived from Qyy
and Qzz are intrinsically negative in group velocity in a
simple-cubic array. We should emphasize here that the nega-
tive group velocity bands differ fundamentally from that
given by other mechanisms. For example, we can obtain
negative group velocity in a lattice by Bragg scattering
which is typically the case in dielectric photonic crystals. In
those cases, the frequency of negative dispersion bands must
be scale dependent, which means that the frequency scales
inversely with the lattice parameter. However, for plasmonic
lattices, the dispersions are nearly scale independent, as
shown in Fig. 1. Another way to obtain negative dispersion is
through “double negativity” by the coupling of electric and
magnetic dipoles, as proposed by Veselago.1 In that case, the
electric-dipole and magnetic-dipole resonances are strong
enough that they can each give, respectively, negative � and
�. Although each resonance P or M on its own gives a band
gap, when they couple together in the same frequency, a pass
band with a negative group velocity emerges. The intrinsic
negative group velocity bands due to the electric quadrupoles
are different since the mechanism is not the coupling of elec-
tric and magnetic resonances, but the hopping of one type of
electric resonance �quadrupole� from one site to another. In
this aspect, the physics is rather similar to the tight-binding
picture of electrons. We note in particular that it is not mean-
ingful to extract effective permittivity or permeability from
such a system �assuming that we use simple homogenization
theories that give k-independent permittivity and permeabil-
ity�. If we insist on applying standard inversion procedures
�say by using the amplitude and phase of transmission and
reflection to extract some form of negative � and �,22 field
averaging method,23 or other effective-medium theory such
as coherent-potential approximation �CPA�,24 the extracted
constitutive parameters carry no physical meaning. In Fig.
3�b�, we calculate the effective parameters �ef f ��ef f =1 from
the extraction procedure, not shown� using CPA, where even
no propagating modes exist near the quadrupole resonance
3.9 eV as �ef f is negative.

IV. PLASMONIC CLUSTERS

The underlying physics can also be understood from the
constitutive relation of macroscopic Maxwell equations: D	

=E	+4�P	−4�	���Q	� �see Ref. 25, Chap. 6�. Near the
quadrupole resonance, the quadrupole terms cannot be ne-
glected, and therefore the electric permittivity cannot be de-
termined by the electric susceptibility �e alone.26 The cou-
pling between magnetic-dipole and electric-quadrupole
resonances is emphasized in metamaterial design. In the op-
tical frequency range, the electric-quadrupole terms are in
general of the same order of magnitude as the magnetic-
dipole terms, and it is probably prudent to consider the effect
of electric quadrupole whenever magnetic-dipoles reso-
nances are strong,10 unless one can argue that the electric-
quadrupole effect is zero due to symmetry or negligible with
respect to the magnetic dipole for some particular reason.

This point can be illustrated by a prototypical plasmonic lat-
tice system in which the building block comprises of a clus-
ter of metallic nanoparticles. Here we consider only low-
frequency excitations, and no high multipole �l�2� for a
single nanoparticle can be excited. In this case every nano-
particle can be treated as a dipole, and we can use coupled
dipole equations to describe the system.15 Let us first con-
sider a finite system with N point dipoles pi located at ri,

i=1, N�. As the dimensions are small compared to the
wavelength, i.e., k0ri�1, we can do a multipole expansion
following standard procedures �see Ref. 25, Chap. 9�. The
time-dependent current contributed by each dipole is Ji
=�pi /�t��r−ri�=−i�pi��r−ri�. By substituting this current
to the definition of electric, magnetic dipole, and electric
quadrupole, and applying the continuity equation �� /�t
+� ·J=0, it is straightforward to find P=x��x�d3x
=− 1

i�Jd3x, M= 1
2cxJd3x, and Q=3xx��x�d3x

=− 3
i��xJ+Jx�d3x. �Here we use the Q for convenience, the

proper definition of quadrupole should be modified to be
traceless: Q=Q− 1

3 trQ.� The corresponding total electric,
magnetic dipole, and quadrupole moments are P=	pi, M
=−

ik0

2 	ripi, and Q=3	�ripi+piri� respectively. It can be
demonstrated by the far-field expansion that the EM fields in
the far field due to the set of N dipoles is indeed equivalent to
a radiator with such values of P, M, and Q as defined by
P=	pi, M=−

ik0

2 	ripi, and Q=3	�ripi+piri� to the ze-
roth and first order. We will also consider in the Appendix
the more general case where the size of the plasmonic cluster
does not have to be small compared to the wavelength. If the
particles are small and close together, the P and Q formulas
are proved to be accurate numerically, while the formula for
M has a very simple analytical form as shown in the Appen-
dix. It is well known that a current loop yields a nonzero
magnetic-dipole moment, and a vanishing quadrupole mo-
ment. However, the quadrupole moment contributed by the
current generated by discrete electric dipoles pi is usually not
zero, and has the same order L · P as the magnetic dipole,
where L is the characteristic linear size of the cluster, and P
is the magnitude of electric dipoles. To find a “pure magnetic
dipole” �M�0, Q=0� or a “pure quadrupole” �Q�0, M
=0� in a frequency range, some particular symmetry is re-
quired to guarantee one of them to be zero. The behavior of
P, M, and Q in a plasmonic cluster could strongly deviate
from a single particle since their resonant frequencies rely on
the special geometry of the configuration. A useful eigen-
mode decomposition method has been adopted to investigate
dipole clusters15,27 or one dimensional chain.14 We choose
the configuration of the cluster to be an octahedron, which is
shown in the inset of Fig. 4. The radius of sphere is rs
=5.6 nm, and the spacing between opposite corners is R
=24 nm. The octahedron structure has symmetry group Oh
which may support negative group velocity in x, y, and z
directions simultaneously.

With P, M, and Q defined above, we can classify the
eigenstates. Given a particular frequency, we can solve for
the eigenvectors that give the values of pi on each site, and
the P, M, and Q formulas give us the corresponding dipole
and quadrupole moments. The octahedral system has many
types of multipole resonances. Figure 4�a� shows four differ-
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ent eigenstates below 3.6 eV. The lowest one at 3.33 eV is a
magnetic-dipole eigenstate, which means only the total mag-
netic moment M�0, and meanwhile P, Q=0. The next one
at 3.41 eV is a quadrupole state, and the one at 3.45 eV is
found to be electric dipole accompanied by another higher
multipole with l�3. The interaction among dipoles in the
octahedron can produce M and Q resonances. We note that
in this particular structure with the symmetry group Oh, the
“pure magnetic dipole” and “pure quadrupole” states can be
found and will not mix with each other. However, the M and
Q resonances are rather close in frequency, which reinforces
the notion that for most plasmonic structures �not just the
octahedron� the M and Q resonances come together in fre-
quency. Although we neglect all the dynamic multipoles l
�2 in such low frequencies for a single sphere, multipole
resonances can be generated by the geometry of the configu-
ration.

If this plasmonic cluster with octahedron geometry is used
as the building block of three-dimensional lattices, the cor-
responding band structure can be classified by the P, M, and
Q eigenstate defined above. In Fig. 4�b�, the band structure
of a simple-cubic lattice with lattice constant a=60 nm is
shown. A negative group velocity band can be observed for
quadrupole state near 3.4 eV. Although similar quadrupole
bands with negative group velocity have been found for
single sphere near 3.9 eV in Sec. II, the more complex build-
ing block can lower the resonance frequency considerably.
Many types of building blocks, such as nanorod pairs,4 “fish-
net” structures,5 are introduced to realize negative refraction
metamaterial in optical frequencies. The negative permeabil-
ity ��0 is usually considered to be associated with a
magnetic-dipole resonance. Actually for a far-field observer,
the contribution from electric quadrupoles might be compa-
rable to that from magnetic dipoles, which is demonstrated
by simulations.10 Since in optical frequencies, � and � are
not uniquely defined,8,9 one can describe all electromagnetic

responses by dielectric function ��� ,k� with both time and
spatial dispersion and set � as 1. Or equivalently, especially
in the case of metamaterials, people usually prefer a descrip-
tion of k-independent effective ���� and ���� to achieve the
“double negativity.” Our calculation shows the quadrupole
itself can render the negative refraction possible even in the
absence of electric- and magnetic-dipole resonance, where
the effective-medium description by ���� and ���� might
not carry useful meaning.

V. CONCLUSION

In summary, we analytically proved that two branches of
quadrupole bands in simple-cubic plasmonic lattices consist-
ing of metallic spheres with very small lattice constants have
intrinsic negative group velocities. The mechanism respon-
sible for this new type of negative dispersion is analogous to
that for d-state electrons in transition metals and its quadru-
pole nature goes beyond conventional isotropic effective-
medium theory. Since the short-range interaction dominates,
the QSA is found to be very accurate for quadrupoles as the
filling ratio is small. In the typical plasmonic system com-
posed of metallic nanoparticle clusters, the quadrupoles play
a significant role as their resonance can be adjusted to lower
optical frequencies, and the coupling strength to external EM
waves are in the same order of magnitude as M. This can be
very important in the design of metamaterials.

ACKNOWLEDGMENTS

This work was supported by the Central Allocation Grant
from the Hong Kong RGC through HKUST3/06C. Compu-
tation resources were supported by the Shun Hing Education
and Charity Fund. We thank Xianyu Ao, Jack Ng, and Junjun
Xiao for helpful discussions.

APPENDIX: EFFECTIVE DIPOLE AND QUADRUPOLE
MOMENTS FROM RIGOROUS

EXPANSION METHOD

We use the same notations for the vector spherical har-
monics as those defined in Ref. 28. And jl�k0r� and hl�k0r�
are, respectively, spherical Bessel functions and spherical
Hankel functions of the first kind. As shown in Ref. 28, the
regular and irregular vector spherical solid harmonics can be
expanded in terms of a “structure constant.”

�Hlm��r − R�� = 	
l�m���

Glm�;l�m����R��Hl�m����r�� �A1�

where the general form of the structure constants
Glm�;l�m����R� can be found in Ref. 28 and references
therein. Applying the relations above, we can “shift” the
electric dipole P at position R to electric dipole P�, magnetic
dipole M�, quadrupole Q� and higher multipoles at the ori-
gin. The structure constants can be simplified by the dipole
approximation �namely, only electric dipole P at position R�,
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FIG. 4. �Color online� �a� The imaginary part of the linear re-
sponse function for an octahedron composed of six sphere with
sphere radius rs=5.6 nm, and the spacing between opposite corners
is R=24 nm. The collective resonance with the lowest frequency at
3.33 eV is a magnetic dipole. The resonance at 3.41 eV is a quad-
rupole. And the ones near 3.45 eV are an electric dipole accompa-
nied with another higher multipole. �b� Band structure of a simple-
cubic plasmonic lattice with lattice constant a=60 nm when the
octahedron is used to be the building block in a unit cell. The
negative group velocity band can be observed near quadrupole reso-
nance frequency 3.4 eV.
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G1mE;l�m����R� =�
	
�

C�1,1,1;m − �,��g1,m−�;l�,m�−��R�C�l�,1,l�;m� − �,�� ,

when �� = E

−�2l� + 1

l� + 1 	
�

C�1,1,1;m − �,��gl,m−�;l�−1,m�−��R�C�l� − 1,l�,1;m� − �,��

when �� = M .

�
Here gl,m;l�,m��R� are structure factors for the scalar

waves, C are the Clebsch-Gordon coefficients between the
angular momentum 1 and l which combine the vector nature
and spatial dependence of EM waves. The scalar structure
factors are given by

gl,m;l�,m��R� = 4� 	
l�m�

il�+l�−lClm;l�m�;l�m�jl��k0R�Yl�m��− R̂� .

�A2�

Clm;l�m�;l�m� are the Gaunt coefficients which determine
the overlap coefficients among three spherical harmonics,

Clm;l�m�;l�m� =� d�kYl�m�
� �k̂�Yl�m�

� �k̂�Ylm�k̂� . �A3�

The electric field for the dipole P at position R can be
expanded as vector spherical harmonics centered at the ori-
gin,

E�r� = 	
lm�

blm
� �Hlm��r�� . �A4�

After the rigorous expansion, one should find the relation
between the coefficients of multipoles l=1,2 to the compo-
nents of P�, M�, and Q� centered at the origin by comparing
the electric field with the corresponding electric fields radi-
ated by P�, M�, and Q�. The matrices Tpb, Tmb, and TQb can
be introduced which satisfy P�=Tpb b�E�, M�=Tmbb�M�, and
Q�=TQbb�Q�. Here, b�E�, b�M�, and b�Q� are the coefficients
defined by b�E�= �b1,−1

�E� ,b1,0
�E� ,b1,1

�E��, b�M�= �b1,−1
�M� ,b1,0

�M� ,b1,1
�M��,

and b�Q�= �b2,−2
�E� , ¯ ,b2,2

�E��. The matrices Tpb and Tmb are
found to be

Tpb = Tmb =
1

ik0
3� 3

16�� 1 0 − 1

− i 0 i

0 �2 0
� , �A5�

while TQb is a 55 matrix �see Ref. 25, Chap. 4� which we
are not going to show here. Now we can use Tpb

−1 to transform
electric dipole P�r=R� to b�E��r=R�, then we can find
b�E,M,Q��r=0� at the origin using the known structure con-
stants G1mE;l�m����R�. Finally we transform b�E,M,Q��r=0�
back to P�, M�, and Q� by Tpb, Tmb, and TQb, respectively.
Numerically we have proved that if the ratio R /� is smaller
than 0.1, the total moments P�, M�, and Q� calculated by the
far-field expansion that shown in Sec. IV are correct within

the error 10%. Hence, these formulas in Sec. IV are good for
“small objects,” and by small, we mean small compared with
the wavelength.

However, the total magnetic moment M� have a quite
simple form since only the l�=m�=0 terms contribute to the
scalar structure factors gl,m;l�,m��R� given by �A2�. In this
case the Gaunt coefficients Clm;l�m�;l�m� can be evaluated as

Clm;00;l�m� =� d�kY00
� �k̂�Yl�m�

� �k̂�Ylm�k̂� =
1

�4�
�ll��mm�,

and we have glm;00�R�=�4�jl�k0R�Ylm�−R̂�. The structure
constants are

G1mE;1m�M�R�

= − �6� C�1,1,1;m − m�,m��j1�k0R�Y1m�− R̂� ,

where C�0,1 ,1 ;0 ,m��=1 is used. It can be rewritten in a
matrix form

G�R� = �3�j1�k0R��Y10�R̂� − Y1,−1�R̂� 0

Y11�R̂� 0 − Y1,−1�R̂�

0 Y11�R̂� − Y10�R̂�
� ,

�A6�

where we use that Y1m�−R̂�=−Y1m�R̂�. The matrix which
“shifts” electric dipole P at position R to magnetic dipole M�
at r=0 is TmbGT�R�Tpb

−1. After some algebra, we find that

TmbGT�R�Tpb
−1

=
3i

2
j1�k0R�� 0 cos � − sin � sin �

− cos � 0 sin � cos �

sin � sin � − sin � cos � 0
� .

�A7�

The matrix in Eq. �A7� may look complicated, but it is
exactly the definition of vector product,

M� = −
3i

2

j1�k0R�
R

R  P . �A8�

In the long-wavelength limit k0R�1, j1�x�→ 1
3k0R, Eq.

�A8� becomes M�=−
ik0

2 RP, which is consistent with the
result from the far-field expansion in the text.
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